skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tao, Nari"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A key challenge in synthetic chemistry is the selection of high‐performing ligands for cross‐coupling reactions. To address this challenge, this work presents a classification workflow to identify physicochemical descriptors that bin monophosphine ligands as active or inactive in Ni‐catalyzed Suzuki‐Miyaura coupling reactions. Using five previously published high‐throughput experimentation datasets for training, we found that a binary classifier using a phosphine's minimum buried volume and Boltzmann‐averaged minimum electrostatic potential is most effective at distinguishing high and low‐yielding ligands. Experimental validations are also presented. Using the two physicochemical descriptors from the binary classifier to represent the chemical space of monophosphine ligands leads to a more predictive guide for structure‐reactivity relationships compared with classic chemical space representations. 
    more » « less